990. 等式方程的可满足性

难度中等73

给定一个由表示变量之间关系的字符串方程组成的数组,每个字符串方程 equations[i] 的长度为 4,并采用两种不同的形式之一:"a==b""a!=b"。在这里,a 和 b 是小写字母(不一定不同),表示单字母变量名。

只有当可以将整数分配给变量名,以便满足所有给定的方程时才返回 true,否则返回 false

示例 1:

1
2
3
输入:["a==b","b!=a"]
输出:false
解释:如果我们指定,a = 1 且 b = 1,那么可以满足第一个方程,但无法满足第二个方程。没有办法分配变量同时满足这两个方程。

示例 2:

1
2
3
输出:["b==a","a==b"]
输入:true
解释:我们可以指定 a = 1 且 b = 1 以满足满足这两个方程。

示例 3:

1
2
输入:["a==b","b==c","a==c"]
输出:true

示例 4:

1
2
输入:["a==b","b!=c","c==a"]
输出:false

示例 5:

1
2
输入:["c==c","b==d","x!=z"]
输出:true

提示:

  1. 1 <= equations.length <= 500
  2. equations[i].length == 4
  3. equations[i][0]equations[i][3] 是小写字母
  4. equations[i][1] 要么是 '=',要么是 '!'
  5. equations[i][2]'='
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
class Solution {
public:

int p[26];
int find_set(int x){
if(x!=p[x]){
p[x]=find_set(p[x]);
}
return p[x];
}
bool equationsPossible(vector<string>& equations) {
//图的连通性问题---并查集

for(int i =0;i<26;i++){
p[i]=i;
}
for(int i=0;i<equations.size();i++){
//==就合并;
if(equations[i][1]=='='){
int x1=equations[i][0]-'a';
int x2=equations[i][3]-'a';
int fx1=find_set(x1);
int fx2=find_set(x2);
if(fx1!=fx2){
p[fx1]=p[fx2];
}
}
}
for(int i=0;i<equations.size();i++){
if(equations[i][1]=='!'){
int x1=equations[i][0]-'a';
int x2=equations[i][3]-'a';
int fx1=find_set(x1);
int fx2=find_set(x2);
if(fx1==fx2)return false;
}
}
return true;

}
};

官方版本:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
class UnionFind {
private:
vector<int> parent;

public:
UnionFind() {
parent.resize(26);
iota(parent.begin(), parent.end(), 0);
}

int find(int index) {
if (index == parent[index]) {
return index;
}
parent[index] = find(parent[index]);
return parent[index];
}

void unite(int index1, int index2) {
parent[find(index1)] = find(index2);
}
};

class Solution {
public:
bool equationsPossible(vector<string>& equations) {
UnionFind uf;
for (const string& str: equations) {
if (str[1] == '=') {
int index1 = str[0] - 'a';
int index2 = str[3] - 'a';
uf.unite(index1, index2);
}
}
for (const string& str: equations) {
if (str[1] == '!') {
int index1 = str[0] - 'a';
int index2 = str[3] - 'a';
if (uf.find(index1) == uf.find(index2)) {
return false;
}
}
}
return true;
}
};

作者:LeetCode-Solution
链接:https://leetcode-cn.com/problems/satisfiability-of-equality-equations/solution/deng-shi-fang-cheng-de-ke-man-zu-xing-by-leetcode-/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。